skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khuller, Samir"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Bipartite b-matching, where agents on one side of a market are matched to one or more agents or items on the other, is a classical model that is used in myriad application areas such as healthcare, advertising, education, and general resource allocation. Traditionally, the primary goal of such models is to maximize a linear function of the constituent matches (e.g., linear social welfare maximization) subject to some constraints. Recent work has studied a new goal of balancing whole-match diversity and economic efficiency, where the objective is instead a monotone submodular function over the matching. Basic versions of this problem are solvable in polynomial time. In this work, we prove that the problem of simultaneously maximizing diversity along several features (e.g., country of citizenship, gender, skills) is NP-hard. To address this problem, we develop the first combinatorial algorithm that constructs provably-optimal diverse b-matchings in pseudo-polynomial time. We also provide a Mixed-Integer Quadratic formulation for the same problem and show that our method guarantees optimal solutions and takes less computation time for a reviewer assignment application. The source code is made available at https://github.com/faezahmed/diverse_matching. 
    more » « less
  2. null (Ed.)